
 last updated: 23-05-12

THE DMX RDM MANUAL

(C) SOUNDLIGHT 2010-2023 * ALL RIGHTS RESERVED * NO PART OF THIS MANUAL MAY BE RE-
PRODUCED, DUPLICATED OR USED COMMERCIALLY WITHOUT THE PRIOR WRITTEN CONSENT OF
THE OWNER * ALL STATEMENTS WITHIN THIS MANUAL HAVE BEEN CHECKED CAREFULLY AND
ARE BELIEVED TO BE ACCURATE, HOWEVER SOUNDLIGHT DOES NOT ASSUME ANY RESPONSIBI-
LITY FOR ERRORS OR OMISSIONS. * THE USER HAS TO CHECK THE SUITABILITY OF THE EQUIP-
MENT FOR THE INTENDED USE. SOUNDLIGHT EXPRESSLY EXCLUDES ANY RESPONSIBILITY FOR
DAMAGES - DIRECT OR INDIRECT - WHICH MAY OCCUR DUE TO MISUSE, UNPROPER INSTALLATI-
ON, WRONG OPERATING CONDITIONS AND NON-COMPLIANCE TO THE INSTRUMENT'S INSTRUCTI-
ONS, AS WELL AS DISREGARD OF EXISTING SAFETY STANDARDS AND REGULATIONS.

SOUNDLIGHT The DMX Company Bennigser Str. 1 D-30974 Wennigsen Tel. 05045-912 93-11

Thank you for choosing SOUNDLIGHT !

Nearly all SOUNDLIGHT devices are supporting DMX RDM, and a number of competitors have al-
so begun to integrate RDM functionality within their products. RDM is coming!

If you have had the chance to try DMX RDM, you won’t want to miss it anymore. You will need a
capable RDM controller to take advantage of all RDM functons - we will be dealing with this issue
later.

Applications

Let us discuss the advantages of DMX RDM first: the communication
on the data bus is bidirectional, taht is, that the responder connected
does not only receive control data from the controller (as with stan-
dard DMX), but also can return data to the controller. This allows to
make steiings and issue queries as well, upon which the response
will give a requested response. This is true communication! Getting a
response from the connected DMX device, either a simple acknow-
ledge „I have successfully received and understood your command“
or a response packed with data „the current temperature is 21 de-
grees Celsius“ is opening a new world to DMX, true Remote Device Management (RDM) of
connected devices.

Until now, several RDM standards have been issued. The basic document is ANSI E1-20, which
defines the basics and the basic RDM command set. Additionally, some additional documents ha-
ve been issued. Among these are E1-37.1, E1-37.2, E1-37.4 and E1-37.5, which define many addi-
tional commands. SOUNDLIGHT devices make extensive use of E1-37 commands, which allow ti-
ming and frequency settings, dimmer curves and more. All DMX standards are available as ANSI
standards, which can be purchased from the American National Standards Institute (ANSI,
www.ansi.org).

Additionally, there are numerous manufacturer specific commands (PIDs). The number, types and
meanings of the parameters used are defined by the respective manufacturer to allow manufactur-
er-specific configuration of the responder. Unfortunately the RDM standard E1-20 only describes
very simple manufacturer specific commands SMSC: Simple Manufacturer Specific Commands)
and lacks a definition of multi-parameter command structure. SOUNDLIGHT also specifies multi-
parameter commands (CMSC: Complex Manufacturer Specific Commands), CSMC allow text and
data including different data structures. All commands used are listed and explained below.

RDM Website

All information regarding DMX RDM can be found on our internet websi-
te at: http://www.soundlight.eu/rdm. There you will also find sevarl ex-
amples how to issue special commands using different RDM controllers.

Data formats

RDM commands (PIDs) have been defined using hexadecimal notation,
that is, digits 0...9, and A,B,C,D,E,F. Use the Windows calculator in Pro-
grammer mode to simply convert between hexadecimal and decimal
values. Some RDM controllers prefer using decimal entries, since this
seems more user-friendly. Other controllers refer to hex format only. Be

careful to also check the separators used when multiple pa-
ramaters are required; usually a space or a comma are
used to separate entries.
.
Last not least please check the range of commands sup-
ported by the controller. There are some controllers just
supporting start address and personality, others may sup-
port the full 1-37 command set as well as all kinds of manu-
facturer specific commands.

We recommend the JESE GET/SET Controller, which also
displays a number of application-specific menus for easy
data entry. For more info pls refer to www.jese.co.uk

The GET/SET controller features several pre-defined
masks for swift data entry.

GET and SET

DMX RDM makes use of three different command classes::

1. DISCOVERY to automatically identify and retrieve attached DMX RDM responders

2. GET to query parameters and settings

3. SET to transmit pratmeters and make the desired settings

That’s why the JESE controller is called „GET/SET“. Of course it will also perform a full discovery..

Smart Controller?

Except providing a smart user interface, RDM controllers just have to follow the syntax defined for
RDM communiction- they do not need to know anything about the setup they are controlling becau-
se all data are stored in the responders. Of course a responder could collect data in advance to ha-
ve them present when used, but sending a query to the actual device to get the most updated data
is a perfact solution. All data, be it integers, floating point or even text data, are stored within the
RDM responders and the main job of the controller is to read and display these data, to sort (when
needed) or remove/change duplicates (e.g. start adress overlaps) and things like that.

Here’s how it works::

1. DISCOVERY
Each DMX RDM responder has a (worldwide) Unique ID, called UID. This UID is compo-
sed of six hexadecimal bytes, with the first two bytes representing the manufacturer ID, and
the remaining bytes are the serial identification. Manufacturer IDs are administered and as-
signed solely by ESTA.org. To dicover a device, the controller defines a address range (e.g.
53 4C 00 00 00 00 ... 53 4C FF FF FF FF and checks the response received. If there is no
response, this address range is empty: there are no responders present. If there is a re-
sponse, but unreadable, there may be multiple responders answering: the address span
must be narrowed. If finally there is a readable response, there is just one responder pre-
sent, the controller can store that UID and start to query the responder for its data.
The manufacturer ID list can be downloaded from the ESTA website (www.esta.org). The

registered SOUNDLIGHT manufacturer ID is „SL“, respective „53 4C“ (see:
http://tsp.esta.org/tsp/working_groups/CP/mfctrIDs.php). The unique serial number must be defined
by the manufacturer. We use a simple scheme: UID „53 4C 36 03 12 34“ means: this is a
SOUNDLIGHT device (53 4C), Device type is „36 03“ and serial is „12 34“.

2. GET-Commands
Each responder can now be indidually addressed using the retrieved UID. Using a GET
command allows to read data from the responder. Each Command has a specific number,
called „PID“. To read or to set a start addess PID 00F0hex must be used. Please refer to
standard ANSE E1-20 to retrieve the basic command set. The PID is just for the controller
communication; for the user interface, the command should be labelled DMX Startaddress“
instead. The most important PIDs are „DMX Startaddress“ and „DMX Personality“

3. SET-Kommandos
If the controller wishes to set different values, e.g. change the DMX startaddress, it must
call the same PID using a SET command. Additionally, the necessary parameters must be
passed - so in total the sender UID, the receiver UID, the command class (SET), the PID, a
parameter data length (PDL) and the parameters must be sent. Please refer to the standard
for a full description of the data packet.

PIDs and Commands

PIDs can be sorted in four groups:

1. Standard commands to be processed by each RDM responder
These PIDs comprise functions necessary for the implementation of DMX RDM. This is the
minimum command set a responder has to process. This set includes all discovery com-
mands, DEVICE INFO, the list of SUPPORTED PARAMETERS, and the STARTAD-
DRESS. There are a lot of responders available on the market who can barely do more - we
call it „trash“.

2. Standard commands
Standard commands comprise all PIDs des-
cribed in the actual standard documents. The
command syntax and the lsit of parameters
are defined in the standard, thus each
controller should know how to process these
commands (watch out: many controllers do
not process all commands!). Smart control-
lers will offer user-friendly masks to enter da-
ta (see picture right, taken from GET/SET
Controller). Standard controller may offer a
simple generic entry field for a parameter list;
in this case the user must refer to the stan-
dard to check the requirements.

The PID range for standard commands is 0001hex to 7FFFhex.

3. Manufacturer Specific Commands
The range from 8000hex to FFDFhex has been reserved for manufacturer specific comman-
ds. MSC are intended for specialfunctions not defined in the standard. All products of one
manufacturer must refer to the same PID when calling a special command. This means,
that different manufacturer may assign other functions to the same PID: thus be careful

when processing MSCs. Checking a MSC also requires checking the respective manuafac-
turer ID.

4. PLASA / ESTA commands
The PID range FFE0hex to FFFFhex has been reserved for the standards committee and
serves for the development of new standard functions (prototyping). Commercially sold pro-
ducts must not contain any of these PIDs.

RDM programming

Our RDM responders allow to set all functional parameters using DMX RDM, but also allow to set
some parameter using a attachable manual start address board. Since all settings are stored in
nonvolatile memory within the responder, the start address board may be removed after the requi-
red setting has been made.

There are different models available::

Startadressboard 3000P:

Uses rotary decimal switches and DIP switches to set DMX startad-
dress, DMX personality and DMX HOLD mode. The current respon-
der state is being signalled with red/green LEDs.

.

Startadressboard 3006P:

Uses a rotary encoder and a liquid crystal display (LCD) to display
current settings. The 3006P also reads actual responder settings in
real time (even when modified by RDM).

NOTICE: Any RDM decoder can be operated with or without start
address board 3000P connected. Please note that all switches beco-
me disengaged and the respective settings are overridden when
remotely programming a DMX start address, DMX personality or
HOLD mode via RDM. This is indicated by the yellow LED „RDM“
permanently ON.
To re-engage the switches, set the hundreds position to „9“ tempora-
rily (any address from 900 to 999 will do) and wait for a programming
cycle to complete. A programming cycle is indicated by the red and
the green LED blinking four times alternatively. LED „RDM“ will extin-
guish and the address switches will take control again.

IMPORTANT NOTICE:: All settings can be performed by DMX RDM anytime. Manual settings of
the DMX start address, the DMX personality and the DMX HOLD mode can locally be done using
any start address board 3000P, 3003P, 3005P, 3006P or 3008P. Addressboards are available as
separate accessories. Pls check our website for functions and compatibility.

RDM
LED

DMX RDM

Startaddress / Personality

The standard settings are selecting the proper DMX perso-
nality (mode of operation) and the DMX startaddress. All
controllers should provide masks to enter these data (see
picture right: JESE GET/SET controller). Withe the
GET/SET controller, both functions are calling the same
mask, which allows to check all settings at a glance.

Setting the DMX start address is limited to the allows range
001...512. Many controllers automatically deduct the requi-
red device slot count and limit the upper value accordingly,
This will result in a maximum DMX start address of 509 for a
4-slot device (pictured).

Special commands

This compilation lists the most important SOUNDLIGHT manufacturer specific commands. While
we have made every effort to make sure that this list is complete and up to date we have to reserve
the right to make changes or corrections where needed and to add new functions without prior noti-
fication. We also do not assume any responsibility for errors and omissions. Please refer to the pre-
viously mentioned RDM standards when defining your own MSC. Feel free to copy our implemen-
tations for your responder (and let us know). Chances are, there are already controllers supporting
our implementation.

PIDs are sorted numerically. Eventually two PDS are listed for the same command. Why this?
Some important PIDs from E1-37 have been doubled as manufacturer specific PIDs. Reason:se-
veral controllers do not yet know about E1-37 and then reject these PIDs as „unknown PID“. This
will not happen when calling the function using a PID in the MSC range. The results are the same,
but in this case a generic mask will be presented where parameters can be entered. You may want
to refer to the E1-37 standard to check for the parameter lists.

PID 8008: FULL COMMAND LIST VOLLSTÄNDIGE BEFEHLSLISTE
This function defines the length of the manufacturer specific
commands section. When selecting „short list“, only DMX
HOLD MODE PIDs will be displayed, all other functions will be
suppressed or disabled. When selecting „full list“ the complete
list will be displayed.

Aufrufe: GET <param = none>
(no parameters required)
Return: <param=Auto_Init [Byte]>

SET <param=List_Type [Byte]>
Return: <param=none>
(no return parameter)

List_Type = $00 short list
List_Type = $FF full list

NOTICE: Please note, that non-displayed functions will not be
available when operating the responder. Additionally, these
functions will be disabled.
Example: enabling „short list“ with a relay module will sup-
press monostable (and related) functions. Even if the module
has been configured as monostable relay, the monostable
function will be disabled. This may be used to suppress
complex programming with just one command.

NOTICE FOR PROGRAMMERS:
Changing the FULL COMMAND LIST setting may require to
run a new discovery to allow the controller refereshing the PID
list. Once discovered, however, some controllers do not re-
fresh the PID list. In this case, shut down and restart the con-
troller to read the correct PID list.

PID 8081: DMX HOLD INPUT 1 Verhalten bei DMX Signalausfall DMX Eingang 1
PID 8082: DMX HOLD INPUT 2 Verhalten bei DMX Signalausfall DMX Eingang 2
PID 8083: DMX HOLD INPUT 3 Verhalten bei DMX Signalausfall DMX Eingang 3
PID 8084: DMX HOLD INPUT 4 Verhalten bei DMX Signalausfall DMX Eingang 4
PID 8085: DMX HOLD INPUT 5 Verhalten bei DMX Signalausfall DMX Eingang 5
PID 8086: DMX HOLD INPUT 6 Verhalten bei DMX Signalausfall DMX Eingang 6
PID 80F1: DMX HOLD MODE Verhalten bei DMX Signalausfall DMX Eingang allgemein
PID 80F2: MASTER HOLD MODE Verhalten bei DMX Signalausfall Master-Eingang

The DMX HOLD MODE determines the behaviour at loss of
DMX data. There is a similar function (DMX FAIL MODE) in
E1-37, but this is much too complex for daily use.
Basically, there are just three (or four) simple options:

PARAMETER: 1 Byte (HOLD_MODE)

GET: Aufruf ohne Parameter
Return: Parameter: 1 Byte (HOLD_Modus)

SET: Calling parameters: 1 Byte (HOLD_Mode)
Return: Status

Parameter values HOLD_Mode:
Hex Dec Function
$00 0 All outputs go to 0% (dark, off)
$01 1 All outputs go to 100% (full on)
$02 2 All outputs remain at the last valid

setting „Keep Last Look“
$03* 3* A predefined scene will be called*

*=not available with all models

Using a start address board 3000P, the HOLD mode will be set using DIP switches 1 and 2.
LCD-Adressboards (3005P, 3006P, 3008P) use a menu to select the requested setting.

Using the GET/SET controller to setup SOUNDLIGHT responders displays a
user-friendly mask to select the right DMX HOLD setting.

PID 0141: DMX FAIL MODE Verhalten bei DMX Signalausfall
PID 8301: DMX FAIL MODE

The DMX FAIL MODE is a standard PID as defined in E1-37,
using multiple parameters for complex HOLD options.
At SOUNDLIGHT, we do not use most of the optional para-
meters. Below please find a simple conversion table to re-
place our DMX HOLD command with DMX FAIL MODE set-
tings.

PARAMETER: 7 Bytes, of which:
Byte 1,2 = Scene number (16 Bit)
Byte 3,4 = Delay after lss of signal

 in 1/10 seconds (16 Bit)
Byte 5,6 = Hold time in 1/10 seconds

 (16 Bit)
Byte 7 = Level

GET: Called without parameters
Return: Parameter: 7 Byte (Fail-Modus)

SET: Calling parameters:: 7 Byte (Fail-Modus)
Return: Status

Conversion from HOLD MODE to FAIL MODE:
HOLD MODE Function FAIL MODE .
00 all off 00 00 00 00 FF FF 00
01 all on 00 00 00 00 FF FF xx
02 "last look" 00 00 FF FF FF FF 00

When setting the DMX HOLD MODE options only „full on“ can
be specified. The DMX FAIL MODE allows to define the out-
put level at loss of signal. Replace the „xx“ with the level to be
displayed at signsl loss.
NOTICE. not all responders allow variable output levels at
loss of DMX512 control.

All values are given in hexadecimal format!

PID 0640: LOCK PIN Eingabe einer PIN zur Verriegelung
PID 8330: LOCK PIN

As with your credit card, you can use a 4-digit PIN to restrict
access to various PIDs.
Default PIN is set to 0000 (0000hex). The LOCK PIN allows
only SET commands, no GET commands (the PIN can never
be read!) Using the GET/SET controller, using PID 0640 will
display a pre-defined mask, while using PID 8330 will display
a generic mask.

To set a new PIN, enter the new PIN followed by the current
PIN.
Example: new PIN 0220hex, current Pin 1836hex:
Using a generic mask, enter 02201836hex.
PINs must be within the range 0000dec (0000hex) to 9999dec

(270Fhex), New products are set to start PIN 0000(dec) .

IMPORTANT NOTICE: Since PINs cannot be retrieved or re-
set, make sure you keep your PIN in a safe place. Also plea-
se check to use the appropriate numbering system as requi-
red by your RDM controller (decimal or hexadecimal) when
changing PINs. All modifications are at your own risk!

PARAMETER: 4 Bytes (2 16-bit-words)
Byte 1,2: new PIN (16 Bit)
Byte 3,4: old PIN (16 Bit))

GET: no GET call allowed;
PIN cannot be retrieved!

SET: Calling parameters:: 4 Bytes (PIN)
Return: Status

Entering a new PIN using the GET/SET Controller

IMPORTANT NOTICE: Make sure to save your PIN in a safe
place. PINs cannot be retrieved. Resetting a PIN is only pos-
sible at the factory.

PID 0641: LOCK STATE Verriegelungszustand
PID 8331: LOCK STATE

Check or change the current lock state.

PARAMETER: 3 Bytes (1x16-bit-word, 1 Byte)
Byte 1,2: PIN
Byte 3: LOCK STATE

GET: Calling parameters: none
Return parameters: 2 Bytes
(LOCK_STATE, TOTAL_LOCK_STATES)

SET: Calling parameters::
3 Bytes (PIN, LOCK_STATE)

Return parameters: Status
PARAMETERS:
PIN: see PID060 (above)
LOCK_STATE: 00= no lock

01= Setup locked
02= Configuration locked
03= All locked

Example:
Calling GET_LOCK_STATE return two bytes, first byte is
current lock state, second byte is the number of available
lock states.
- no lock: 0003
- Setup locked: 0103
- Config locked: 0203
- All locked: 0303

Calling SET_LOCK_STATE requires entering the current PIN
followed by the desired lock state.
Eingabe: <PIN> <gewünschte Verriegelung>.

Example:
current PIN = 2345dec, Setup Lock required.
Command is: 092901hex.
Make sure to check the numbering system! Since 2345dec is
0929hex. the total command parameter is 092901hex, when
the controller expects data entry in hex format.

The LOCK STATE determines the accessibility of several set-
tings (see table in appendix). When locked, the function can-
not be acccessed. The responder will display a „Write protec-
ted“ message box.

Selecting the LockState using the GET/SET Controller

PID 0642: LOCK STATE Ausgabe einer Beschreibung für die Verriegelung
 DESCRIPTION
PID 8332: LOCK STATE DESCRIPTION

Using a GET command with the respective LOCK_STATE as
parameter returns the verbal description of that lock state.
There is not SET command available.

PID 1040: IDENTIFY MODE Identify-Modus
PID 8340: IDENTIFY MODE

Each DMX RDM responder must be able to accept a IDEN-
TIFY command The identify mode puts the responder in a spe-
cial state suited to draw the attention to it to be able to identfy
it. Thus a moving head may shake its head, while a LED driver
may switch to a blinking mode to draw the attention to it.

It may, however, be most annoying having a responder to re-
vert to identify mode during showtime. Thus the command
IDENTIFY MODE has been created to set the responder to
LOUD identify mode (shaking its head) or QUIET identify mo-
de (swich the indicator LEDs or similar). We think, it’s a very
important command which was not present in the original stan-
dard E1-20.

Several responders are preset to QUIET mode to prevent un-
wanted disruption during showtime (e.g. DMX relays). Check
your setup before getting to work.

PARAMETER: 1 Byte (Identify_Mode)

GET: Called without parameters
Return: Parameter: 1 Byte (Identify_Mode)

SET: Calling parameters:: 1 Byte (Identify-Modus)
Return: Status

Identify-Mode:
Hex Decimal Function
00 0 Quiet Mode: e.g. Identify by status LEDs
FF 255 Loud Mode: e.g. Ident switching outputs

Identify Mode setting using the JESE GET/SET Controller

PID 0341: MINIMUM LEVEL Pegel-Begrenzung
PID 0342: MAXIMUM LEVEL

Use the functions MINIMUM LEVEL and MAXIMUM LEVEL to
limit the allowed output level to the set limits. Using the
GET/SET controller, it’s a simple task: simply set the faders to
the respective values and wait 1...2 seconds until the values
have been programmed into the responder. If the outputs are
set, you can simply check the results visually.

All settings within the DMX level range 0...255 ($00...$FF) are
allowed, but make sure that the maximum level is higher than
the minimum level. Also check the correct data format when
using a generic mask.

Setting the limits is quite easy when using the JESE
GET/SET controller. Just move the faders.

When using a generic mask, 5 Bytes must be transferred as
payload:

GET: Called without parameters
Return: 5 Bytes, thereof:

Byte 1,2: Minimum-Level upward, 16 Bit
Byte 3,4: Minimum-level downward, 16 Bit
Byte 5: „On“ Below Minimum

SET: called with 5 Bytes parameter (see above)
Return: Status

Parameters:
All levels are transferred as 16 bit data. If the level range of
the responder is less than 16 bits, the upper n bit are taken in-
to account. The resolution (in bits) must be declared in DIM-
MER_INFO.

„On Below Minimum“ is either 00hex (output goes to zero if le-
vel is below minimum level) or 01hex (output stays at minimum
level when level is below minimum level setting)

PID 8341: MINMAXMODE MINIMUM-/MAXIMUM-MODUS

This function defines the behaviour of the MINIMUM LEVEL
and MAXIMUM LEVEL settings.
There are two basic options for MIN/MAX settings:

a) LIMITING
The output level will be limited to the respective MINIMUM or
MAXIMUM settings. Increasing or decreasing the output level
will be stopped as soon as the level exceeds the limit values.

b) SCALING
The output level will be scaled proportionally to not exceed the
set MINIMUM or MAXIMUM settings.

Both options can be combined with the „output zero at input
zero“ function (see diagrams).

PARAMETER: 1 Byte: MINMAX_MODE

Parameter = $00 (0 dec):
Full Limiting as standard function

Parameter = $01 (1 dec):
Limiting with zero level passing through: higher in-
put levels below set MIN will be output as MINI-
MUM LEVEL

Parameter = $80 (128 dec):
The Limiting will be replaced by continuous sca-
ling: thus the full control range can be used.

Parameter = $81 (129 dec):
Combining scaling and zero pass-through..

PID 0343: CURVE AUSGANGSKURVE

PID 0343 defines the output curve characteristic..

Selecting the output curve using the GET/SET controller:
select from the drop-down menu. Done.

The preset curve is "QUASI-LOGARITHMISCH" (curve 01). This applies to most LED drivers, sin-
ce a logarithmic curve matches the human eye’s sensitivity. For compatibility, it may be necessary
to change to "LINEAR" (curve 02). Besides, some decoders will offer a „USER CURVE“ (curve
03), which (using a free curve editor) can be tailored to your specific needs.

Issue a GET command to retrieve the current setting:

GET Called without parameters
Return: 2 Bytes:

Byte 1: current setting
Byte 2: number of available settings

SET: 1 Parameter (1 Byte): new setting

Output Curve settings are counted from 01 onward The example
above would allow settings 01, 02 or 03, with the number of availa-
ble settings being 03. Thus a GET command will automatically return
the information how many curves are available. Using that info, you
can obtain a curve description by calling the PID OUTPUT CURVE
DESCRIPTION and passing the respecting curve number as para-
meter.

PID 0344: OUTPUT CURVE Ausgabe einer Beschreibung für die Kurve
 DESCRIPTION

Entering the curve number as parameter will return the curve
description in ascii text format. There is no SET command
available.

PID 0345: OUTPUT RESPONSE AUSGANGSVERHALTEN

The output behaviour (smoothing) can be set using the OUT-
PUT RESPONSE TIME function. The preset is "SMOOTH" for
optimum output behaviour.
Most responders offer three settings:

1: DIRECT immediate output o received DMX data (fast
response but may cause some stepping)

2:SMOOTH Optimum smoothing of incoming data

3: SLOW Slow fade of output.

Selecting the output response using the GET/SET control-
ler: select from the drop-down menu. Done.

Issuing a GET command returns the current setting:

GET Called without parameters
Return: 2 Bytes:

Byte 1: current setting
Byte 2: number of possible settings

SET: 1 Parameter (1 Byte): new setting
Return: Status

Output Response settings are counted from 01 onward The exam-
ple above would allow settings 01, 02 or 03, with the number of
available settings being 03. Thus a GET command will automatically
return the information, how many output response settings are
available. Using that info, you can obtain a output response descrip-
tion calling the PID OUTPUT RESPONSE DESCRIPTION and pas-
sing the respecting output response number as parameter.

PID 0346: RESPONSE TIME Ausgabe einer Beschreibung für die Glättung
 DESCRIPTION

Entering the output response number as parameter will return
the output response description in ascii text format. There is
no SET command available.

PID 8121: SLOT LABELS SLOT LABEL SCHREIBEN
PID 0121: SLOT LABELS*

The PID SLOT LABELS exists in RDM Standard E1-20, but is
limited to GET access. Thus slot labels can be read, but can-
not be modified by the user. This makes sense for devices
with fixed pre-defined slot assignments, but not for general
building blocks such as our PWM drivers or relay blocks, whe-
re individual slot labelling is essential: e.g. Relay 1 as „Motor“,
Relay 2 as „Room Light“, Relay 3 as „Smoke Machine“ etc.

In contrast to the standard our responders allow to write slot
labels using PID 0121 or PID 8121 when a SET command is
not accepted by the controller. For the command syntax, pls
refer to the standard E1-20. Due to its structure, the command
is a complex manufacturer specific command (CMSC), which
must process several parameters.

Important: Slot labels are limited to 16 characters!

Important: The function must be enabled before writing slot
labels is possible.

User Slot Label enable:

Parameter: <SLOT_LABEL_ON:Byte>
$00: User slotLabel active
$FF: User slotLabel off

GET Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(SLOT_LABEL_ON: Byte)

Return: Status

After User Slot Labels have been enabled, the slot labels dis-
played may have changed immediately, since data are now
read from the user memory.
Example: RGB decoder slot labels may change from „Fader
1“, „Fader 2“ and „Fader 3“ to „Red, Green, Blue“. These la-
bels can be user-modified as „Fire Red“, „Grass Green“ or
„SKy Blue“ if you like.

Writing slot labels::
Parameter: <SlotLabel Nr:Word>

<SlotLabel Text: 16 Bytes>
where:
SlotLabelNo: $0000 = Label 1

$0001 = Label 2
$0002 = Label 3
etc

SlotLabelText:ASCII Bytes

GET Calling parameters:: <SlotLabel Nr:Word>
Return: 18 Bytes: <SlotLabel Nr:Word>

<SlotLabel Text: 16 Bytes>

SET: Calling parameters:: 18 Bytes
<SlotLabel Nr:Word>
<SlotLabel Text: 16 Bytes>

Return: Status

The GET/SET controller makes it easy to change slot
labels: once enabled, the pre-defined slot labels
change to user-modified labels. Simply over-type la-
bels to change contents.

Checking the faderpanel shows the new fader labelling
immediately. Remember that fader labels are stored in
the RDM responder, not in the RDM controller. Thus
shutting down the controller or moving the responder
to a different location or setup will keep the user-defi-
ned labels intact.

*= Due to RDM Standard E1-20 PID 0121 can only be read,
but cannot be written. Our responders also accept SET-com-
mands. If your controller does not accept SET commandsn-
for PID 0121, use MSC PID 8121, where a SET access will
be possible. Disadvantage: since standard controllers may
only offer a generic mask for dataentry, you have to convert
text into ASCII codes to write to the responder.

PID 80FA DMX HOLD LEVEL PEGEL BEI SIGNALAUSFALL

If supported, this fuction allows to set a DMX HOLD LEVEL which is output in case of control signal
missing. The level can be set in 8 bit or in 16 bit format. Only the upper n bits are considered, whe-
re n is the resolution specified in DEVICE INFO.

Calls: GET <param = none> (no parameter needed)
Return: <param=DMX HOLD LEVEL [1 byte if n<=8, else 2 bytes]>

SET <param=DMX HOLD LEVEL [1 byte if n<=8, else 2 bytes]>
Return: <param=none> (no parameter returned)

PID 8400 SENSOR DEFINITION SENSORTYPE ANPASSEN

This function changes the definition and parameters of the sensor. The format copies the sensor
definition as described in RDM standard E1-20. Its purpose is the change the default definition for
external sensors. NOTICE: internal sensors (system sensors) cannot be modified.

TIPP: Before trying to make a SET call, issue e GET command and study the result to familiarize
yourself with the sensor define data.

Sensors are numerated from 00hex until nn , where at least sensor 00 is a system sensor
(power supply). System sensors cannot be modified, SET attempts will be refused.

Function: GET / SET

Parameter:

GET: 1 Byte (Sensor-Number, $00 ... $nn)
Return: 46 Bytes Sensordata (see list)

SET: 46 Bytes Sensor data (see list below)
Return: <Status>

Example: Read Sensor 00. (GET) This may yield a data set like this:
00 01 02 01 00 78 01 2C 00 96 00 F5 02 20 50 6F 77 65 72 20 53 75 70 70 6C 79 20 56 20
6F 6C 74 73 20 20 20 20 20 20 20 20 20 20 20 20 20

This is a detailed alalysis of these data (example):

00 Sensor Number ;byte ;$00 = system sensor
01 Type ;byte ;01=voltage sensor
02 Unit ;byte ,02=volts
01 Prefix ;byte ;01=prefix "dezi"
00 78 Range Minimum Value ;word ;0078 = 120dV = 12,0V
01 2C Range Maximum Value ;word ;$012C = 300dV = 30,0V
00 96 Normal Minimum Value ;word ;$0096 = 150dV = 15,0V
00 F5 Normal Maximum Value ;word ;$00F5 = 245dV = 24,5V
02 Recorded Value Support ;byte ;$00= no, $02=yes
20 space ;byte ;“space“
50 6F 77.... 32 chars text label ;"Power Supply Volts “

NOTICE:
Use these data to set the sensor functionality::
Sensor No.: 01...0Fhex (the number of sensors available in the responder can be queried by RDM)
Type: 00hex=temperature, 01=voltage, 02=current, 05=power, 09=volume,

1C=contact, 7F=other
Unit: 00=none, 01=degrees C, 02=DCV, 07=DCA, 0A=W
Prefix: 00=non, 01=dezi, 02=centi, 03=milli, 04=micro

11=deka, 12=hekto, 13=kilo, 14=mega (all data hexadezimal)
A full description of all parameters available can be found in the standards document ANSI E1.20-2010,
which can be donloaded from: https://webstore.ansi.org

NOTICE:
The useable length of the text label is limited to just 31 characters, since a space will automatically be added
as first character. This is necessary since all data must be stored in words. Unfortunately the standard does
not take this into account.

PID 8403 OUTPUT CONFIGURATION AUSGANGS-TYPE FESTLEGEN

This function is available for responders with configurable outputs.

FUNCTION: GET / SET

Aufrufe:
GET: Parameter: keine

Return: n+2 bytes <control outputs available: word>
<out1:byte> <out2:byte> <out3:byte> <outn:byte>
n= Anzahl der verfügbaren Ausgänge

SET: Pararameter: 3 bytes <control output number: word> <outx:byte>
x= Nummer des zugehörigen Ausganges

Return: <status>

Parameter:
OUTPUT CONFIGURATION:
$FF= Output deactivated
$00= Normal Port (TTL-Level: off/on)
$01= PWM output
$02= PWM inverted

Please refer to chapter „HARDWARE DECRIPTION“ in the responder manual. Output topologies
and wireing information is given there.

PID 8423 DMX FOOTPRINT SLOTANZAHL FESTLEGEN

DMX FOOTPRINT determines the number of data slots allocated by the responder. The number of
slots can differ for each personality

FUNCTION: GET / SET

GET: Calling: no parameters
Return: n bytes <slots<_footprint1:byte>....<slots<_footprintn:byte>

n= number of available personalities

SET: 2 bytes: <personality:byte> <slots:byte>
Return: <status>

Parameter: Personality. byte 01...nn
Slots: byte 00...nn

PID 8438 INPUT POLARITY EINGANGSPOLARITÄT ÄNDERN

This function sets the polarity of the switch sensor inputs.

Calls: GET <param = none> (no parameter needed)
Return: <param=Polarity [1 Byte]>

SET <param=Polarity [1Byte]>
Return: <param=none> (no parameter returned)

Polarity = $FF all normal polarity (standard mode)
Polarity = $00 all inverted polarity

From firmware version 1.1 onward, single switches can be inverted individually. Where available,
use personality 3 „Test Mode“ to check for functionality and proper setting of the switch inputs.
Switches should be set to show „L“ when disengaged (operational mode) and „H“ when engaged
(error mode).
Changing the polarity of the center switch will result in changing the center point trigger flank.

RIGHT SWITCH: Bit 0 (normal: add value 1, inverted: add value 0)
CENTER SWITCH: Bit 1 (normal: add value 2, inverted: add value 0)
LEFT SWITCH: Bit 2 (normal: add value 4, inverted: add value 0)

Normal Mode: Bit set
Inverted Mode: Bit not set

Example: to invert the right and the left end sensor switch input, add 1+4 = 5.
Thus Polarity = $05

 A001: RDM DECADES ANZAHL DER AUSGEBEDEKADEN

This setting is intended for DALI devices and controls the out-
put data range. The range and the associated characteristic
are set using the RDM DECADES function.

Parameter: <DECADES:Byte>
DECADES = 02hex (2dez): 1%...100%
DECADES = 03hex (3dez): 0,1%...100%

GET: no parameters
Return: 1 Byte: current setting

SET: calling parameters: 1 Byte
(DECADES: Byte)

Return: Status

PID C000: SPEED SCALING STEPPER MOTOR GESCHWINDIGKEIT

The PID SPEED SCALING allows to apply a scaling factor
(>1) to a stepper motor speed

Parameter: <SPEED_SCALING:Byte>
STEP WIDTH = $01...$FF

GET Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(SPEED_SCALING: Byte)
Return: Status

IMPORTANT NOTICE:
For security, the function SPEED SCALING may be locked
(LOCK STATE = 02 or 03). If so, no data will be written but a
message box "WRITE PROTECTED" will be displayed ins-
tead. Change the LOCK STATE to „00“ resp. „unlocked“ using
the valid PIN.

PID C001: STEP WIDTH STEPPER MOTOR SCHRITTWEITE

The defaut setting is 1 stepper motor step per DMX step. To
increase the step width, multiple motor steps can be assigned
per DMX step (1...99dec). To do so, just call STEP WIDTH and
enter the desired factor.

Parameter: <STEP WIDTH:Byte>
STEP WIDTH = $01...$FF

GET Called without parameters
Return: 1 Byte: derzeitige Einstellung

SET: Calling parameters:: 1 Byte
(STEP WIDTH: Byte)
Return: Status

 NOTICE:
For security, the function STEP WIDTH may be locked (LOCK
STATE = 02 or 03). If so, no data will be written but a mes-
sage box "WRITE PROTECTED" will be displayed instead.
Change the LOCK STATE to „00“ resp. „unlocked“ using the
valid PIN.

PID C002: PWM FACTOR STEPPER MOTOR PWM-FAKTOR

When a stepper motor does not turn, motor windings may sink
higher currents since there is no induction due to missing mo-
vement. This could cause thermal damage within the motor.
Setting the motor current to zero, the holding power will also
be missing. The PWM FACTOR PID allows to define the hol-
ding current (0% [$00] to 99% [$FF]).

The function allows a minimum setting of 0% (0dec, 00hex, no
hold) to 100% (255dec, FFhex, full hold current).

The factory preset is 60% (153dec, 99hex).

Parameter: <PWM FACTOR:Byte>
PWM FACTOR = $00...$FF

GET Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(PWM_FACTOR: Byte)
Return: Status

 NOTICE:
For security, the function PWM FACTOR may be locked
(LOCK STATE = 02 or 03). If so, no data will be written but a
message box "WRITE PROTECTED" will be displayed ins-
tead. Change the LOCK STATE to „00“ resp. „unlocked“ using
the valid PIN.

PID C003: LOWER LIMIT UNTERE FAHRBEREICHS-GRENZE

This function allows to set the "lowest position“ („leftmost posi-
tion“) in positioning mode. The function is only active in positio-
ning mode.

Parameter: <LIMIT_LO:Byte>
LIMIT_LO = $00...$FF

GET Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(LIMIT_LO: Byte)
Return: Status

Limit_Lo = $00...$FE sets the parameter value as leftmost
Limit_Lo = $FF sets the actual position as leftmost

NOTICE:
For security, the function LOWER LIMIT may be locked
(LOCK STATE = 02 or 03). If so, no data will be written but a
message box "WRITE PROTECTED" will be displayed ins-
tead. Change the LOCK STATE to „00“ resp. „unlocked“ using
the valid PIN.

PID C004: UPPER LIMIT OBERE FAHRBEREICHS-GRENZE

This function allows to set the "highest position“ („rightmost po-
sition“) in positioning mode. The function is only active in posi-
tioning mode.

Parameter: <LIMIT_HI:Byte>
LIMIT_HI = $00...$FF

GET Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(LIMIT_HI: Byte)

Return: Status

Limit_Lo = $00...$FE sets the parameter value as rightmost
Limit_Lo = $FF sets the actual position as rightmost

NOTICE:
For security, the function UPPER LIMIT may be locked (LOCK
STATE = 02 or 03). If so, no data will be written but a mes-
sage box "WRITE PROTECTED" will be displayed instead.
Change the LOCK STATE to „00“ resp. „unlocked“ using the
valid PIN.

PID C005: END SWITCH POLUNG ENDSCHALTER
POLARITY

Function C005 allows to invert the polarity of the end switches-
closing contacts (n.o.) can be replaced with openers (n.c.).
This simplifies the connection to existing hardware.

Parameter: <POLARITY:Byte>
POLARITY = $FF: normal
POLARITY = $00: inverted

GET Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(POLARITY: Byte)
Return: Status

PID C006: POS DECEL RANGE POSITIONIERUNGS-BREMSZONE

This PID allows to set the decelaration zone for electric stepper mo-
tors. The decelaration zone should be set for full (maximum) speed.
Within the decelaration zone the speed decreases linearly to mini-
mum speed.
The deceleration zone can be set from 15 to about 2000 steps..

Function Calls:
GET <param = none> (no parameter required))

Return: <param=Decel_Range [Byte]>

SET <param=Decel_Range [Byte]>
Return: <param=none> (no return parameters)

Parameter:
Decel_Range = $01...$04
sets the number of stpes as deceleration range:

$01 = 255 Steps
$02 = 512 Steps
$03= 1024 Steps
$04 = 2048 Steps

Decel_Range = $81...$85
sets the number of stpes as deceleration range:

$81 = 255 Steps
$82 = 127 Steps
$83= 63 Steps
$84 = 31 Steps
$85 = 15 Steps

FUNKTION C007 POS DEAD ZONE TOTZONE

This function defines the dead zone (steps) around zero po-
sition.

Function Calls:

GET <param = none> (no parameter required)
Return: <param=DeadZone [Byte]>

SET <param=DeadZone [Byte]>
Return: <param=none>
(no Return:parameter)

Parameter: DeadZone = $00...$FF
sets the parameter value as dead zone

NOTICE:
When setting a Pos_Dead_Zone please de-
activate positioning accuraca (if available).
Both functions are overlapping. When de-
fining a dead zone, positioning accuracy
should be set to $00.

PID C008: INIT SPEED INITALISIERUNGS-GESCHWINDIGKEIT

This function sets the speed during initialization (searching zero po-
sition). This is a fixed speed. Please note that the initalization routine
only starts when allowed by the CONTROL slot (usually DMX slot
#1).

Parameter: <INIT_SPEED:Byte>
INIT_SPEED = $00...$FF

GET Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(INIT_SPEED: Byte)
Return: Status

Init_Speed = $00...$FF sets the parameter value as initialization
speed.

Init_Speed = $00...$FE sets the parameter value as init speed
Init_Speed = $FF sets the actual speed as init speed

TIPP:
Operate the device in „endless mode“ to find the preferred speed.
Then switch to „positioning mode“ and save the current speed fader
value.

ATTENTION: If mechanical endpoints exist, make sure to stop befo-
re reaching the maximum position.

PID C009: ACCURACY BITS POSITIONIERUNGSGENAUIGKEIT (BITS)

This function sets the accuracy when reaching the set position..

This function is only active in positioning mode. The positioning ac-
curacy is defined by a bitmask, which sets the number of steps for
„position reached“. The default setting is $03 (8 steps).

Parameter: <ACCURACY_BITS:Byte>
ACCURACY_BITS = $00...$07

GET Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(ACCURACY_BITS: Byte)
Return: Status

Parameter:
Accuracy_Bits = $00...$07

$00 = full resolution, 0 steps
$01 = dead zone 2 Steps
$02 = dead zone 4 Steps
$03 = dead zone 8 Steps
$04 = dead zone 16 Steps
....etc. until
$07 = dead zone 128 Steps

PID C00A: AUTO_INIT ENABLED AUTOMATISCHE INITIALISIERUNG

This function enables automatic initialization in positioning mode.

Function Calls:
GET <param = none> (no prarameter required)

Return: <param=Auto_Init [Byte]>

SET <param=Auto_Init [Byte]>
Return: <Status>

Parameters:
Auto_Init = $00 Initalization off
Auto_Init = $FF Initialization on

NOTICE: Please note that a zero point sensor must be present for
automatic initialization. If during initialization no valid zero point can
be found, the system stops after three unsuccessful attempts and
displays a error message. This requires manual intervention.

SAFETY NOTICE:
If the automatic initilization has been aborted with error message,
the system must only be restartet with an operator present to be able
to take control manually.

PID C010 MID POINT OFFSET

This function sets the position offset for the center point sensor. Usually, a inductive sensor is
being used, which is detected over a certain span when the nozzle is moving.

The zero point detector is flank triggered only when the nozzle is moving upward. To compensate
for the detection range, a MID POINT OFFSET value can be defined using this function. The data
entry range is 000...255 (00hex...FFhex), with the default set to center position 128 (80hex) at the fac-
tory. Normally, this will work out fine for all standard applications.

Calls: GET <param = none> (no parameter needed)
Return: <param=MidPointOffset [1 Byte]>

SET <param=MidPointOffset [1 Byte]>
Return: <param=none> (no parameter returned)

FUNCTION C011 ACCELERATION RAMP
FUNCTION C012 DECELERATION RAMP

This function sets the ramp for acceleration or deceleration of the stepper motor. 8 values must be
given to define the acceleration curve, with full speed = $FF and zero speed = $00. See example
for more details.

Calls: GET <param = none> (no parameter needed)
Return: <param=Ramp [8 Bytes]>

GET Mask

Ramp design

SET <param=Ramp [8Bytes]>
Return: <param=none> (no parameter returned)

Ramp = $00...$FF the value will be taken as speed factor

PID C013 MOVING RANGE

This function sets the total moving range of the nozzle. The standard resolution (when setting the
stepper motor driver as stated in the addendum) is 32 steps per degree. This will result in the set-
tings as per table 1:

Angle [°] Steps Hexadecimal

30 960 03C0
45 1440 05A0
60 1920 0780
90 2880 0B40

120 3840 0F00
150 4800 12C0
180 5760 1680

Table 1 Angle Step setting

Calls: GET <param = none> (no parameter needed)
Return: <param=StepSetting [2 Bytes]>

SET <param=StepSetting [2Bytes]>
Return: <param=none> (no parameter returned)

Changing from >90° to 60° (+/-30°) mo-
ving range

Adjusting the moving range will automatically scale the position faders to cover the full range.

PID C0C0: INTERNAL PATCHING Zuweisung der DMX Datenquelle für das Relais

This function is used with DMX relay modules.

Usually, relay 1 will be activated by DMX slot 1, relay 2 by DMX slot 2 etc. This function introduces a pat-
ching between the DMX data source and the relay number, which makes it possible to trigger any relay from
any data source. Also, multiple relays can be triggered from the same source.

Parameter: <relay number:word> <Source:byte>

GET Called without parameters
Return: n Bytes (n= number of relays present)

Byte 1...n: source / current setting

GET Calling parameters: word (relay number [16 Bit])
Return: 1 Byte

Byte 1: source / current setting

SET: Calling parameters:: 3 Bytes
(relay number [word], source [byte]

Return: Status

Parameters:
Relays: 0001hex Relay 1

0002hex Relay 2
....
0006hex Relay 6
FFFFhex all relays

Source: 01hex DMX slot 1
02hex DMX slot 2
....
06hex DMX slot 6

PID C0E0: DMX DATA POLARITY Flanke für die Auslösung des monostabilen Relais

The function DMX DATA POLARITY allows to invert received
DMX data. This is a useful feture to invert the triggering of mo-
nostable pulse, e.g. change from triggering by the positive
flank to the negative flank. The command syntex resembles
setting monostable mode.

Parameter: <relay number:word> <Polarity:byte>

Polarity: 00hex inverted
FFhex normal

GET Called without parameters
Return: n Bytes (n= number of relays)
Byte 1...n: <current setting>

GET Calling parameters:: 2 Bytes <relay number:word>
Return: 1 Byte

Byte 1: <current setting>

SET: Calling parameters:: 3 Bytes
<relay number:word> <Polarity:byte>
Return: <Status>

Relay functions @ FULL COMMAND LIST = 0

NOTICE:
The settings of PIDs C0C0, C0E0 and C0F0 have no effect as
long as the responder operates with short command list. No
configuration entries can be made.

Relay functions in Detector mode

NOTICE:
PIDs C0C0, C0E0 und C0F0 are accessible in Detector mode,
but have no effect since no DMX data are received. Since no
DMX slots have been assigned, there is no signal source
available.

PID C0F0: MONOSTABLE TIME Setzen der monostabilen Impulsdauer

The relays of DMX relay modules 3202R-H, 3204R-H or
3206R-H operate as bistable relays, that is, as long as the re-
levant DMX data are above the upper threshold level, the out-
put relay is engaged.
The function can be set to monostable mode (inpulse output)
with user definable impulse duration using PID C0F0.

Parameter: <Relay number> <Monotime>
wobei: Relay number = 0001hex: relay 1

Relay number = 0002hex: relay 2
....
Relay number = 0006hex: relay 6
Relay number = FFFFhex: all relays

Monotime: 01...3Fhex 25ms...1,5s in 25ms steps
41...7Fhex 0,25s...15,75s in 250ms

steps FFhex: bistabile Mode

GET command using the GET/SET Controller. Data for all
existing relays are displayed (shown for 2ch model 3202R-H)

Press GET to retrieve the actual setting, either all relays or
one individual relay:

Parameter: <Relay number:word> <Monostable Time:byte>

GET Called without parameters
Return: n Bytes (n= number of relays present)

Byte 1...n: current setting

GET Calling parameters:: Word (Relay number, 16 Bit)
Return: 1 Byte : current setting

SET: Calling parameters:: 3 Bytes
<Relay number:word> <Monostable Time:byte>

Return: Status

To set relay 2 to monostable mode using a pulse
duration of 0,4 sec (400ms) please enter:

0002 10 hex

because: 10hex = 16dec, 16*25ms = 400ms

Press the SET button to execute.

Checking:
When issuing a new GET command, the actual
settings will be displayed. Relay 1 is bistable, re-
lay 2 is in monostable mode with 0,4s pulse time.

NOTICE: when set to monostable mode, relays will stay engaged for the set pulse duration even if
the DMX control is reset to zero before.

Shortening the pulse duration

You can shorten the pulse duration (pulse ends when
driving DMX signal falls back below lower threshold) by
adding 80(hex) / 128(dec) to the settings. This can be do-
ne for each relay separately. The settings would read:

Monotime: 81...BF(hex) 25ms...1,5s in 25ms steps
C1...FE (hex) 0,25s...15,5s in 250ms steps
FF(hex) bistable Modus

PID C0F1: EXCLUSIVE MODE Relais schalten gegenseitig verriegelnd

EXCLUSIVE MODE means: only one of two relays can be
activated momentarily. This locking is done electronically.
This is the truth table:

CH1 CH2 RELAY 1 RELAY 2
OFF OFF OFF OFF
ON OFF ON OFF
OFF ON OFF ON
ON ON no change no change

Parameter: <MODE:Byte>
MODE = FFhex (255dec): Exclusive ON
MODE = 00hex (0dec): Exclusive OFF

GET Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(MODE: Byte)

Return: Status

When using modules with multiple relays, these pairs are swit-
ched to exclusive mode:
- Relay 1 and Relay 2
- Relay 3 and Relay 4
- Relay 5 and Relay 6
...etc...

PID C0F2: FAST MODE Hohe Schaltgeschwindigkeit setzen

This mode suppresses the DMX glitch detector and speeds
up the signal processing. Each DMX data packet will be rou-
ted directly to the outputs, no evaluation of DMX values
exists. This is the fastest mode possible.

Parameter: <MODE:Byte>
MODE = FFhex (255dec): Fast Mode ON
MODE = 00hex (0dec): Fast Mode OFF

GET Called without parameters
Return: 1 Byte: <current setting>

SET: Calling parameters:: 1 Byte
<MODE: Byte>
Return: <Status>

PID C0F3: SAFETY MODE / TRIGGER MODE Auf Trigger-Modus umschalten

This mode configures individual relays (or all relays) to trigger mo-
de. In trigger mode, the relay will only be engaged if the trigger slot
has been set to a special trigger value.

Parameter: <TRIGGER_MODE:Byte>
MODE = FFhex (255dec): Trigger_Mode ON
MODE = 00hex (0dec): Trigger_Mode OFF

GET Called without parameters
Return: n Bytes (n= number of relays)
Byte 1...n: <current setting>

GET Calling parameters:: 2 Bytes <relay number, word>
Return: 1 Byte : <current setting>

SET: Calling parameters: 3 Bytes
<relay number: word; Trigger mode: byte>
Return: <Status>

GET without parameters shows all relays (1-6) set to
trigger mode. Slot7 is the trigger slot.

SET: relay 2 is no longer controlled by the trigger slot

Checking with GET, no parameters: all relays except re-
lay 2 are still tied to the trigger slot (7).

PID C0F4: SECURITY DELAY Delay time for sensor evaluation

The sensor delay time can be activated to delay sensor rela-
ted action. Thus it will be possible to trigger a relay and to di-
sable the output again as soon as the sensor is triggered.
This allows to create applications like automatic filling stations
(relay activated and de-activated as soon as sensor reports fil-
ling level) or flame detectors (process started but halted if
sensor not in range after delay time).

Delay time is defined in increments of 25ms. Thus the total
time can be adjusted from 0...6,3 seconds.

Parameter: <Slot number> <DELAY> [Byte]
where: Slot number = 0001hex: Slot no. 1

Slot number = 0002hex: Slot no. 2
Slot number = FFFFhex: all

DELAY = 00hex (000dec) ... FFhex (255dec)
 (timecount * 25ms)

Example: The safety supervision for relay 2 shall be engaged
after 2 seconds:

SET PID C0F4: 00 02 50

Calculation: 2 seconds is 80x 25ms, since 80(dec) is 50hex ($50). Most
RDM controllers require values to be entered in hex format.

PID C0F5: DELAY TIME DELAY-ZEIT EINSTELLEN

This mode adds a signal delay. The delay is specified in 25ms
steps.

Parameter: <SIGNAL_DELAY:Byte>
SIGNAL_DELAY = $01...$FE

GET Called without parameters
Return: n Bytes (n= number of slots)

Byte 1...n: <current setting>

GET Calling parameters: 2 Bytes (slot number, word)
Return: 1 Byte : <current setting>

SET: Calling parameters:: 3 Bytes
(Slot number: word; Signal_Delay: byte>

Return: <Status>

PID C0F6: SAFETY WINDOW / TRIGGER WINDOW FENSTERBREITE FÜR AUSLÖSUNG

This function defines the trigger window for the trigger slot. A trigger
event will only occur when the trigger level is within (including) the
lower trigger level and the upper trigger level.

Parameter: <TRIGLEVEL_LOW: Byte>
<TRIGLEVEL_HIGH: Byte>
Trigger level can range from 00hex to FFhex. The
higher level must not be lower than the lower level.
We recommend to avoid level FFhex since a broken
DMX line may (false) be interpreted as FFhex and
then trigger events.

GET Called without parameters
Return: 2 Bytes <Triglevel_Low, Triglevel_High>

SET: Calling parameters: 2 Bytes
<Triglevel_Low: byte , Triglevel_High: byte>
Return: <Status>

PID DC01: OUTPUT CURRENT AUSGANGSSTROM FESTLEGEN

This PID sets the output current for LED drivers. The setting is in
mA. Depending on the hradware used, setting may be continously
or is steps. When steps are used, the selected (or the next lower)
step will be activated.

Parameter: <OUTCURRENT: word>
word: current in [mA]

GET Called without parameters
Return: <OUTCURRENT: word>

SET: Calling parameters:: 2 Bytes (word)
OUTCURRENT: word
Return: <Status>

Typical values for current settings:
350 mA: 015Ehex, 350dec

500 mA: 01F4hex, 500dec

600 mA: 0258hex, 600dec

700 mA: 02BChex, 700dec

PID DCCA: OUTPUT AUSGANGS-KALIBRIERUNG
 CALIBRATION

This menu allows to set n individual calibration values
for outputs 1...n. Data entry uses hexadecimal number
format.

(shown: JESE GET/SET controller,
setting for 12-channel DMX Demux 3012C-EP)

GET entry values:
none displays list of calibration factors
00 xx displays calibration factor for

slot xx (xx=01...nn)

SET entry values:
00 xx yy Sets calibration factor yy for

slot xx (yy=00...FF; xx=01...nn)

FF FF yy Sets same calibration factor yy
for all outputs

PID E001: LOWER TEMP TRIP UNTERER TEMPERATUR-REGELPUNKT
PID E002: UPPER TEMP TRIP OBERER TEMPERATUR-REGELPUNKT
PID E003: ALARM TEMP TRIP ALARMTEMPERATUR-SCHALTPUNKT
PID E004: TEMP SAMPLE TIME TEMPERATUR-SAMPLEZEIT
PID E005: TEMP DROP LEVEL TEMPERATUR-ABFALLPEGEL

Diese Funktionen dienen der Einstellung des Temperatur-Ma-
nagements. Sie sollten vom Anwender nicht verstellt werden.
Detailliertere Hinweise entnehmen Sie bitte dem separat er-
hältlichen Temperaturmanagement-Manual.

PID E001: LOWER TEMP TRIP UNTERER TEMPERATUR-REGELPUNKT

This setting defines the lower temperature management threshold. Outputs will ramp
up slowly as soon as the measured temperature falls below the preset temperature.
The default setting is 40C. That means: as soon as the LED temperature falls below
40C, the outputs will slowly ramp up to full control range.

The LOWER TEMP TRIP point must be entered in 0,5C steps. That is, to set a lower
trip point of 40C, a value of 80 (50hex) must be entered. To disable temperature ma-
nagement, enter a value of 0 (00hex). Please note, that many RDM editors require valu-
es to be entered in hexadecimal format. Please refer to the manual of your preferred
RDM editor.

Parameter: <LOWER TEMP:Byte>
LOWER TEMP = $00...$FF, $00=OFF

GET: Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(LOWER TEMP: Byte)
Return: <Status>

PID E002: UPPER TEMP TRIP OBERER TEMPERATUR-REGELPUNKT

This setting defines the upper temperature limit. As soon as the set limit is being excee-
ded, the outputs will be decreased slowly. The default setting is 50C.
The degree of power reduction is derived from the transgression, about 10%/degree.
Minimum output level at all times is 20%.

When setting the UPPER TEMP TRIP point, please note that the UPPER TEMP TRIP
point must be entered in 0,5C steps. That is, to set a lower trip point of 50C, a value of
100 (64hex) must be entered. To disable temperature management, enter a value of 0
(00hex). Please note, that many RDM editors require values to be entered in hexadeci-
mal format. Please refer to the manual of your preferred RDM editor.

Parameter: <UPPER TEMP:Byte>
UPPER TEMP = $00...$FF, $00=OFF

GET: Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(UPPER TEMP: Byte)
Return: <Status>

PID E003: ALARM TEMP TRIP ALARMTEMPERATUR-SCHALTPUNKT

This setting defines the absolute maximum temparature limit. When exceeding the ab-
solute maximum temparature setting, the outputs will immediately be limited to 20%
max. output, and a alarm message will be generated. The LED signalling will change to
synchronous red-green blinking.

Default setting is 80C. The ALARM TEMP TRIP temperature must be entered in 0,5C
steps, thus setting the alarm temp to 80C requires a entry of data value 160 (A0 hex).
To disable temperature management, enter a value of 0 (00hex). Please note, that ma-
ny RDM editors require values to be entered in hexadecimal format. Please refer to the
manual of your preferred RDM editor.

Parameter: <ALARM TEMP:Byte>
ALARM TEMP = $00...$FF, $00=OFF

GET: Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(ALARM TEMP: Byte)
Return: <Status>

PID E004: TEMP SAMPLE TIME TEMPERATUR-SAMPLEZEIT

The sample interval time between two temperature measurements. The interval is set
to 12 seconds default and is optimized for high power LED spots. This ensures a
smooth temperature control profile.

ATTENTION: extreme settings may result in thermal oscillations (setting too low) or
temperature overshoot, which may burn the LEDs.

The temperature step width is 0.5°C per sample interval.

Parameter: <SAMPLE TIME:Byte>
SAMPLE TIME = $00...$FF, $00=OFF

GET: Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(SAMPLE TIME: Byte)
Return: <Status>

PID E005: TEMP DROP LEVEL TEMPERATUR-ABFALLPEGEL

The mimimum level can be set using the TEMP DROP LEVEL command, and is set to
50% (80 hex) default. The scaling matches the DMX value range 0...255 (00 hex to FF
hex). We recommend to keep the drop level below 80% (204 dec, CC hex) to ensure
enough headroom for smooth temperature regulation. Also please keep in mind that the
level setting depends on the curve setting (e.g. linear or logarithmic). The Temp Drop
level always refers to the DMX input level, not to the output!

Parameter: <TEMP DROP:Byte>
TEMP DROP = $00...$FF

GET: Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(TEMP DROP: Byte)
Return: <Status>

PID E00E: TEMPSENSE ENABLE SENSOR-FREISCHALTUNG

Activation of individual temperature sensors. Up to 16 sensors
can be managed (1 bit per sensor, total: 2 bytes).

The TEMP SENSE ENABLE function allows die enable/disa-
ble individual sensors as needed.

Default:
FF FFhex resp. 255 255dec resp. 1111 1111 1111 1111Bin

Please refer to the product manual for the individual assign-
ment of temperature sensors.

PID FF08: CONFIG ACCESS. ZUGRIFF AUF KONFGURATION

The PID „CONFIG ACCESS“ starts a automatic down counter
which locks all access to configuration parameters as soon as
countdown to zero is complete. The timer decreases 1 count
per minute, thus times from 1 thru 240 minutes can be set. Ad-
ditionalle, the counter can be disabled for continuous access.

Parameter: <Access_Time:Byte>
ACCESS_TIME = $01...$FA

GET Called without parameters
Return: 1 Byte: current setting

SET: Calling parameters:: 1 Byte
(Access_Time: Byte)
Return: <Status>

HINWEIS: The function CONFIG ACCESS completely blocks
all EEPROM access, including DMX startaddress and perso-
nality. This applies to both, parameter changes by RDM or lo-
callly by a start address board. Thus the function CONFIG AC-
CESS SET is a mighty tool to automatically protect your re-
sponder from unexpected parameter changes- no matter what
the source might be.

Parameter: Access_Time:

00hex / 0dec: sofortige Verriegelung
01hex / 1dec. bis F0hex / 240dec: Access time in minutes
FAhex / 250dec: permanent access

Default: FAhex

PID FF7F: RDM TESTAUSGABE / RDM DIAGNOSTIC INFO

These functions are used for factory setup only.
No user input expected.

Sensors

Many responders consist of one or more sensors to measure voltage, temperature, pressure or
more. Here are some examples for sensors, which can be queried using DMX RDM:

Sensor 1 Sensor 2 Sensor 3 Sensor 4
Power supply Elektronics temperature LED temperature Temperature Master %

The GET/SET Controller automatically assigns a suitable mask to the relevant sensor. Thus all
sensor data are easily readable.

Some sensors register variations over time in a special mask, which can be reset using the „<<“
button. To restart registration, press „>“ .

The mask and temperature limits for LED temperature display can be changed by the user using
the temperature management PIDs. Changes will be updated with next discovery of the responder.

More RDM Info

For more info regarding DMX RDM, RDM settings and specific RDM commands pls refer to our
website at www.soundlight.eu/rdm.

Anhang
PID NAME LOCK1 LOCK2

E1-20 and E1-37 commands
0015 COMMS STATUS - X
0082 DEVICE_LABEL - -
0090 FACTORY_DEFAULTS - -
00E0 PERSONALITY X -
00F0 START_ADDRESS - -
0121 SLOT_LABELS - -
0140 BLOCK_ADDRESS - -
0141 FAIL_MODE X -
0201 SENSOR_RESET - -
0341 MIN_LEVEL - X
0342 MAX_LEVEL - X
0343 CURVE - X
0345 OUTPUT_RESPONSE - X
0347 MODULATION_FREQUENCY - X
0603 REAL_TIME_CLOCK - -
0640 PIN X X
0641 SET_LOCK_STATE - -
1001 RESET - -
1010 IDENTIFY - -
1040 IDENTIFY_MODE - -

DMX Resolution
80E2 16BIT_MODE - X

DMX Slot Count
80C1 SET_SLOTCOUNT - X

DMX HOLD Mode
80F1 DMX_HOLD X -
80F2 MASTER_HOLD X -
80F3 MASTER_CHANNEL - X
80F4 MASTER_TABLE - X
80F5 MASTER_CHANNEL - X

Slot Labeling
8121 SLOT_LABELS - X

E1-20 and E1-37 commands
8341 MIN_MAX_MODE - -

Sensor Configuration
8400 SENSOR_DEFINITION_DATA X X
8401 SENSOR_LIMITS X X

Slot Configuration
8403 OUTPUT_CONFIGURATION - X
8433 DMX_FOOTPRINT - X

TimerSetup
9002 TIMEBASE - X
9003 TRIGGER_LEVEL - X
9004 TRIGGER_COUNT - X

MotorDriver
C001 STEP_WIDTH - X
C002 PWM_FACTOR - X
C003 LOWER_LIMIT - X
C004 UPPER_LIMIT - X
C005 ENDSWITCH_POLARITY - X

Relay Properties
C0C0 PATCHING - X
C0E0 POLARITY - X
C0F0 MONOSTABLE_TIME - X
C0F1 EXCLUSIVE_MODE - X
C0F3 SAFETY_MODE - X
C0F4 SAFETY_DELAY - X
C0F5 DELAY - X

Output Configuration
DC01 OUTPUT_CURRENT X X
DC0E DC_OFFSET X X
DC0F OUTPUT_OFFSET X X
DC10 DC_SUPPRESS X X
DC1F 16BIT_OFFSET X X
DCCA DC_CALIBRATION - X
DCCD USER_CURVE - X
DCCE BENDEC_CURVE - X

Temperature Management
E001 LOWER_TRIP_POINT - X
E002 UPPER_TRIP_POINT - X
E003 ALARM_TRIP_POINT - X
E004 SAMPLE_TIME - X
E005 TEMP_DROPLEVEL - X
E00E TEMP_ENABLE - X

Device Setup
FF01 FACTORY_SETUP - -
FF02 CALIBRATION - X

SubDevices
FF0E SUBDEVICE_STARTADDRESS - X
FF0F SUBDEVICE_ENABLE X X

GET/SET CONTROLLER

Wir bieten Ihnen mit dem USBRDM-TRI ein Interface an, das komplett mit einer RDM-Controller-
Applikation kommt und bestens geeignet ist, um alle unsere DMX RDM Interfaces (siehe: RDM In-
terfaces) zu verwalten. Mit dem Interface erhalten Sie eine Installations-CD mit Gerätetreibern und
die RDM Controllersoftware "GET/SET" für Windows 7,8, und Windows 10. Das Interface und die
Software kann auf mehreren Computern installiert werden. Es wird nur dann aktiviert, wenn es an-
gesteckt ist.

Die Besonderheit des USBRDM-TRI ist die in-
terne Signalverbeitung, die die RDM Kommuni-
kation entlastet und beschleunigt. Laufende Up-
dates der Controller-Firmware und der Applikati-
ons-Software sind enthalten; neue Versionen
können jederzeit einfach von der Hersteller-
Website gedownloaded werden. Der benötigte
Update-Link ist in der Controller- Software ent-
halten.

Das USB-RDM TRI wird mit der GET/SET Con-
troller Software gebundlet ausgeliefert. Da das
Interface so wohl DMX empfangen als auch
DMX senden kann, kann es einfach in eine DMX Leitung eingeschleift werden. Jede vorhandene
DMX Steuerung kann so einfachst um volle RDM Funktionalität erweitert werden. Einfacher geht
es nun wirklich nicht!

Mehr Infos auf:
www.soundlight.eu/produkte/usbrdm-tri2

